57 Fe-Moessbauer Spectroscopic Studies on the Products of [1.1]Ferrocenophane-1,12-dione with I2, Br2, and DDQ Masanobu WATANABE, Yuichi MASUDA, Izumi MOTOYAMA, and Hirotoshi SANO* Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Fukasawa, Setagaya-ku, Tokyo 158 [1.1]Ferrocenophane-1,12-dione reacts with I_2 and DDQ giving a diamagnetic [1.1]ferrocenophane- I_2 and DDQ adduct and reacts with Br_2 giving a paramagnetic [1.1]ferrocenophanium-1,12-dione⁺ Br_3 salt. The results of 57 Fe-Moessbauer spectroscopy and other physicochemical measurements of the reaction products indicate that the formers are an I_2 and a DDQ molecular complex, while the latter is a trapped-valence type mixed-valence salt. It has been already known that a number of mixed-valence polynuclear ferrocene compounds can be classified into two types of valence states of Fe atoms, a trapped valence type and an averaged-valence type, by means of ⁵⁷Fe-Moessbauer spectroscopy. The results of the 57 Fe-Moessbauer spectroscopy and other physicochemical measurements of the mixed-valence state of monocationic salts of [2.2]ferrocenophane-1,13-diyne and [1.1]ferrocenophane show that the former's cation is in a valence state averaged over Fe(II) and Fe(III) and the latter's is in a trappedvalence state in the 57 Fe-Moessbauer time scale (ca. 10^{-7} s). $^{1-4}$) The facts clearly prove that the metal-metal interaction takes place through a conjugate π -system in the mixed valence compounds. [1.1]Ferrocenophane-1,12-dione, first synthesized by W. E. Watts in 1967, 5) has also conjugated π -systems, although the π -electrons might be localized in the CO groups to some extent. On the other hand, it has been discovered for [2]ferrocenophanes and some binuclear biferrocenes that the nonbonding e_{2q} electrons of the Fe atoms in the ferrocenes are ligated to a Lewis acid as in the case of [2]ferrocenophane-2I2 adduct, giving a larger quadrupole splitting (Q. S.) value than the value of the original ferrocene derivatives. $^{6-8}$) In the present report, the results of the 57 Fe-Moessbauer spectroscopy and other physicochemical measurements on the reaction products of [1.1]ferrocenophane-1,12-dione with I_2 , Br_2 , and dichlorodicyanobenzoquinone (DDQ) are described. [1.1]Ferrocenophane-1,12-dione was prepared according to the previous report,⁵⁾ and its reaction products with I_2 , Br_2 , and DDQ were prepared from the following reaction. [1.1]Ferrocenophane-1,12-dione (100 mg) was dissolved into 200 cm³ dry benzene. To this solution a large excess of I_2 (1.0 g) dissolved in dry benzene mixed with hexane was added. The bright yellow precipitates formed were filtered and washed with dry benzene and ether. Found: C, 39.94; H, 2.34%. Calcd for [1.1]ferrocenophane-1,12-dione- I_2 , $C_{22}H_{16}O_2Fe_2I_2$: C, 38.98; H, 2.38%. The reaction product of [1.1]ferrocenophane-1,12-dione with Br_2 was prepared by a 2384 Chemistry Letters, 1987 method similar to that used for the reaction product with I_2 . The yellow-brown precipitates formed were filtered and washed with dry benzene and ether. Found: C, 38.88; H, 2.43%. Calcd for [1.1] ferrocenophane-1,12-dione-1.5Br₂, $C_{22}H_{16}O_2Fe_2Br_3$: C, 39.80; H, 2.43%. [1.1]Ferrocenophane-1,12-dione (100 mg) was dissolved into 100 ${\rm cm}^3$ chloroform. To this solution a large excess of DDQ (300 mg) dissolved in benzene mixed with hexane was added. The dark-yellow precipitates formed were filtered and washed with chloroform mixed with hexane. Found: C, 54.87; H, 2.56; N, 4.31%. Calcd for [1.1]ferrocenophane-1,12-dione-DDQ, $C_{30}H_{16}Cl_2O_4N_2Fe_2$: C, 55.34; H, 2.48; N, 4.30%. 57 Fe-Moessbauer spectroscopic measurements were carried out by using a 57 Co(Rh) source moving in a constant acceleration mode. The isomer shift (I. S.) value for 57 Fe was taken with respect to metallic iron and the experimental error of the I. S. and Q. S. values was estimated within \pm 0.02 mm s⁻¹. Cyclic voltammograms were obtained by using a Hokuto Denko HB-107A function generator and a Hokuto Denko HA-201 potentiostat combined with a standard three-electrode configuration. A working electrode of platinum button (Beckman) and an Ag/AgCl reference electrode were connected via a salt bridge containing $(0.1 \text{ mol dm}^{-3})$ $[(C_4H_9)_4N]ClO_4$ in CH_2Cl_2 . ¹³C-CP-MAS NMR spectra were obtained under the same conditions as in the case of a previous report. 9) Chemical shifts were measured with respect to external adamantane and converted to the shifts from TMS. Typical 57 Fe-Moessbauer spectra of the [1.1]ferrocenophane-1,12-dione and its reaction products with the oxidizing reagents are shown in Fig. 1 and the 57 Fe-Moessbauer parameters are listed in Table 1. [1.1]Ferrocenophane-1,12-dione shows relatively smaller Q. S. values (2.16 mm s⁻¹ at 78 K and 2.17 mm s⁻¹ at 300 K) than the value of ferrocene itself (2.41 mm s⁻¹ at 78 K) probably because of the electron-attractive carbonyl groups attached to cyclopentadienyl rings. The I₂ product gives a slightly smaller Q. S. doublet (Q. S., 2.05 mm s⁻¹ at 78 K and 2.15 mm s⁻¹ Table 1. ⁵⁷Fe-Moessbauer parameters of [1.1]ferrocenophane-1,12-dione, their adducts, and salt | Compounds | Temp/K | Q. S./mm s | ¹ I. S./mm s ⁻¹ | |---|-----------|--------------|---------------------------------------| | [1.1]Ferrocenophane-1,12-dione | 78
300 | 2.16
2.17 | 0.52
0.42 | | [1.1]Ferrocenophane-1,12-dione-I ₂ | 78
300 | 2.05 | 0.48
0.44 | | [1.1]Ferrocenophanium-1,12-dione+ Br3 | | 2.12 | 0.51
0.50 | | [1.1]Ferrocenophane-1,12-dione-DDQ | 78
300 | 2.18
2.18 | 0.48 | Chemistry Letters, 1987 at 300 K) than the value of the [1.1]ferrocenophane-1,12-dione. The absence of either a broad singlet line or an anomalously larger Q. S. line than that of [1.1]ferrocenophane-1,12-dione indicates that the Fe atom is neither oxidized by I₂ nor bonded with the I atom. The results are in good accordance with the magnetic susceptibility measurements; that is, the reaction product with I₂ is diamagnetic from 78 K to 300 K. Figure 2 shows $^{13}\text{C-CP-MAS}$ NMR spectra of [1.1]ferrocenophane-1,12-dione (a) and its I₂ product (b). The $^{13}\text{C-chemical}$ shift values of the [1.1]ferrocenophane-1,12-dione are found to be 202.3 (CO), 80.0(C₁), 74.4(C₅H₄) and 72.7(C₅H₄) ppm and the values of the I₂ product are found to be 201.2(CO), 79.8(C₁) and 73.1(C₅H₄) ppm. Only small shifts are observed for the reaction product with I2, although a large low-field shift (20.2 ppm) is found in the reaction of ruthenocene with I_2 giving a ruthe $nocene-2I_2$ adduct which contains a Ru-I bond. 9) A TG thermogram of the [1.1]ferrocenophane-1,12-dione shows no weight loss up to 250 °C and that of the crystalline iodine a loss from 60 °C, whereas the reaction product with I₂ shows a weight loss from 110 °C. The facts indicate that the reaction product with I_2 is neither a mixture nor a compound with a metal-I bond but a molecular complex or adduct with a weak interaction between the [1.1]ferrocenophane-1,12-dione and I2. A similar observation was also found for the reaction product with DDQ. [1.1]Ferrocenophane-1,12-dione reacts with DDQ giving diamagnetic dark-yellow precipitates which are analyzed as [1.1]ferrocenophane-1,12dione-DDQ. The Q. S. values of the DDQ product are found to be 2.18 mm s^{-1} at 78 K and 2.19 mm s^{-1} at 300 K, which are in good agreement with the values of [1.1]ferrocenophane-1,12-dione. It can be concluded that the reaction of [1.1]ferrocenophane-1,12-dione with ${\rm I}_2$ and DDQ gives their molecular comlexes, whereas [2.2]ferrocenophane-1,13-diyne and [1.1]ferrocenophane react with I_2 and DDQ giving monocationic ferrocenium salts. Fig. 1. 57 Fe-Moessbauer spectra of [1.1]-ferrocenophane-1,12-dione (a) and its reaction products with I₂ (b), Br₂ (c), and DDQ (d), all at 78 K. The reason why [1.1]ferrocenophane-1,12-dione cannot be oxidized by I_2 or DDQ can be explained by assuming its high oxidation potential. The results of the cyclic voltammography of [1.1]ferrocenophane-1,12-dione show much higher two one-oxidation potential values (E1/2: 0.96 and 1.27 V) than the values of [2.2]ferrocenophane-1,13-diyne and [1.1]ferrocenophane (E_{1/2}: 0.60 and 0.94 V, and 0.48 and 0.70 V in CH2Cl2, respectively). On the other hand, [1.1]ferrocenophane-1,12-dione reacts with a large excess of Br₂, giving paramagnetic yellowbrown precipitates. Magnetic Fig. 2. 13 C-CP-MAS NMR spectra of [1.1]ferrocenophane-1,12-dione (a) and its I_2 adduct (b). Star mark (*) indicates spinning side bands. susceptibility measurements show that the mean value of effective magnetic moment is estimated to be 2.3 BM in a temperature range from 78 K to 300 K. The reaction product shows two Q. S. doublets (Q. S., 2.12 and 0.35 mm s⁻¹; I. S. 0.51 and 0.50 mm s⁻¹, respectively, at 78 K) in the 57 Fe-Moessbauer spectrum. The results indicate that the electron transfer rate is less than ca 10^7 s⁻¹; that is, there is much weaker interaction between the two Fe atoms, Fe(II) and Fe(III), in the Br₃ salt than that of monocationic salt of [2.2]ferrocenophane-1,13-diyne.¹⁾ The conclusion is supported by the electronic absorption spectroscopic study; i.e., little intervalence charge transfer band is observed in the near-infrared region on the spectrum of the mixed valence [1.1]ferrocenophanium-1,12-dione Br₃ salt. ## References - I. Motoyama, M. Watanabe, and H. Sano, Chem. Lett., <u>1978</u>, 513; M. Watanabe, S. Iijima, I. Motoyama, and H. Sano, J. Phys., 40, C2-392 (1979). - 2) C. Levanda, K. Bechgaard, and D. O. Cowan, J. Org. Chem., 41, 2700 (1976). - 3) W. H. Morrison, Jr. and D. N. Hendrickson, Inorg. Chem., <u>14</u>, 2331 (1975). - 4) I. A. Kramer, F. H. Herbstein, and D. N. Hendrickson, J. Am. Chem. Soc., <u>102</u>, 2293 (1980). - 5) W. E. Watts, J. Organomet. Chem., <u>10</u>, 191 (1967). - 6) M. Watanabe, I. Motoyama, and H. Sano, Bull. Chem. Soc. Jpn., <u>59</u>, 2103 (1986). - 7) M. Watanabe, I. Motoyama, and H. Sano, Bull. Chem. Soc. Jpn., <u>59</u>, 2109 (1986). - 8) M. Watanabe, K. Sato, I. Motoyama, and H. Sano, Chem. Lett., 1983, 1775. - 9) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, Chem. Lett., <u>1987</u>, 1669. (Received September 30, 1987)